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Incomplete gamma functionsFm(x), originally defined and used in the electronic
structure theory, have been examined from the viewpoint of electron–molecule scat-
tering theory for their possible use in calculation of two-electron integrals in a mixed
Gaussian and plane-wave basis set. Effective calculation ofFm(z) functions with a
complex argument is discussed.c© 1998 Academic Press
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I. INTRODUCTION

The family of functions defined as

Fm(t) =
∫ 1

0
u2m exp(−tu2) du (t > 0;m= 0, 1, 2 . . .) (1)

are of crucial importance in the electronic structure theory for the evaluation of two-electron
integrals over Gaussian basis set functions [1, 2]. Two-electron integrals of that type are
also met in the electron–molecule scattering theory [3], though their evaluation requires
complex arguments to be used [4] inFm functions. For a complex argumentz we have [1]

F0(z) = 1

2

√
π

z
erf(
√

z) (2)

and

Fm+1(z) = − d

dz
Fm(z). (3)

The complex error function is related to thew(z) function [5]

erf(z) = 1− w(i z)e−z2
(4)
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and for the evaluation ofw(z) the algorithm proposed by Gautschi [6] has been advocated
[7]. However, this way of calculation of two-electron integrals in the electron scattering
theory has not been used much in practice. Instead, Watson and McKoy [8] developed a
method based on a partial wave expansion of plane wave functions.

Our interest in use ofFm functions in electron scattering calculations arose from our
intention to keep close similarity between electronic structure and electron scattering cal-
culations. Such a similarity is very beneficial. It permits us to modify and extend highly
effective codes developed forab initio molecular orbital calculations for purposes of elec-
tron scattering. Also, it permits us to apply merits of the electronic structure theory such as
the Rys numerical quadrature for the evaluation of two-electron integrals [9] and gradient
techniques [10, 11] for calculation of cross sections of vibrational excitation of polyatomic
molecules by electron impact. We considered it therefore expedient to inspect the properties
of Fm functions in greater detail and to use our knowledge thus obtained for evaluation of
integrals in a mixed plane-wave and Gaussian basis set [12].

II. ASYMPTOTES OF Fm FOR LARGE NEGATIVE REAL ARGUMENTS

Upon first looking at Eq. (2), it appears that real functionsFm(x) cannot accommodate
negative real argumentsx. However, the error function may be expanded in polynomial
series [5] and thenF0(x) may be expressed in the form

F0(x) =
∞∑

n=0

(−1)nxn

n!(2n+ 1)
, (5)

which enables analytical continuation of theF0(x) function defined originally [1] for posi-
tive arguments only. The alternative expansion [1]

F0(x) = e−x
∞∑

i=0

(2x)i

(2i + 1)!!
(6)

also permits us to use negative arguments. However, as the absolute value of negativex is
increased, the two expansions (5) and (6) become poorly convergent; a computer cannot
maintain the required numerical precision, and, in any case, the value ofF0(x) goes to
infinity.

Another expansion forF0 in the asymptotic region is obtained from Eqs. (2) and (4), and
from the asymptotic expansion [6] forw(z) as

F0(x) = e−x

(
− 1

2x
+
∑
i=2

(−1)i
(2i − 3)!!

(2x)i

)
, (7)

from which we obtain for very large negativex,

F0(x) ∼ e−x

−2x
. (8)

By differentiation ofF0(x) in the form of Eq. (7) and from Eq. (3) we obtain

lim
x→−∞ Fm(x) = lim

x→−∞ F0(x), m> 0. (9)
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III. F0 FUNCTION FOR COMPLEX ARGUMENTS

We systematically tested four different ways of calculation ofF0 in order to find the most
economical calculation for a particular region of complex argumentsz. These four ways of
calculation are described briefly as follows:

1. We closely followed the usual procedure for computation of realFm(x) functions
[1]. As in the routine FMTGEN from the Gaussian 94 package [13], we employed the usual
formulas for two different series, but we coded them in complex arithmetics with some
modifications. Hence, for|z| ≤11 the expansion

Fm(z) = e−z
∑
i=0

(2z)i

(2m+ 2i + 1)!!
(10)

is used and for|z|> 11 the asymptotic expansion [1]

Fm(z) ≈ 0(m+ 1/2)

2zm+1/2
− 0(m+ 1/2)

2z
e−z
∑
i=0

1

0(m− i + 1/2)zi
. (11)

2. As the second way of calculation we used the routine WOFZ [14] for the evaluation
of w(z). If z, z= x + iy, lies inside the ellipse( |x|

6.3

)2

+
( |y|

4.4

)2

= 0.085264, (12)

w(z) is obtained from Eq. (4) and the following expansion of the error function [5]

erfz= 2√
π

∑
n=0

(−1)nz2n+1

n!(2n+ 1)
. (13)

For z outside this ellipse thew(z) function is calculated by two different variants of the
Laplace continued fraction.

3. We have coded our own routine based on the algorithm by Gautschi [6]. It evaluates
w(z)by a simple algorithm related to the Laplace continued fraction for any|z|. Specifically,
we have used Eqs. (3.8) and (3.11)–(3.13) from Gautschi’s paper [6].

4. The last mode of calculation ofF0(z) is suitable only for arguments with a large
negative Rez. To protect the calculation against overflow we calculateF0(z) in its asymptotic
form (7) as

F0(z)

e−z
= − 1

2z
+
∑
i=2

(−1)i
(2i − 3)!!

(2z)i
. (14)

Four terms in (14) secure precision to 10 significant digits for Rez<−500. By differenti-
ation of Eq. (14) and from Eq. (3), we obtain the higherFm(z) functions.

The method of the choice for a particularz is shown in Fig. 1. For each method we tested
the number of terms to be evaluated in the expansion series and we checked that both real
and imaginary parts ofF0(z) are calculated at least with the precision to nine significant
digits. We have coded Fig. 1 as a table internally stored in a program, so that the selection
of the method for a pair(x, y) is simple and fast.
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FIG. 1. Recommended method of calculation for complexFm(z) functions with 0≤ argz≤π . 1. Standard
routine for the evaluation ofFn(x) (as for example routine FMTGEN from Gaussian 94) rewritten in complex
arithmetics. 2. WOFZ routine. 3. algorithm by Gautschi. 4. Three-term asymptote given by Eq. (14). Note that
Fm(x + iy)= Fm(x − iy).

The referee of this paper made us aware of another possibility of obtaining the complex
error function. It may be obtained from a special routine coded for the evaluation of the
Dawson’s integral [15]. However the accuracy of the real version of this rourtine is only
2.10−7 and we estimate that the evaluation of the complex error function would not be faster
than by the procedures noted above.

IV. HIGHER FUNCTIONS Fm(z)

For higher realFm(x) functions with positivex the following recursion formula [1] is
commonly used:

(2m− 1)Fm−1(x) = 2x Fm(x)+ e−x. (15)

To secure the computational stability, the downward recursion formula must be used. In
fact, the accuracy ofFm functions increases as we go to lower orders. In contrast, for the
asymptotic region with large negativex, the upward recursion formula must be used,

Fm(z)

e−z
=
[
(2m− 1)

Fm−1(z)

e−z
− 1

]/
2z. (16)

Alternatively, by differentiation of Eq. (14) and from Eq. (3), we obtain the higherFm(z)
functions as

Fm(z)

e−z
= − 1

2z

[
1+ 2m− 1

2z
+ (2m− 1)(2m− 3)

(2z)2
+ · · · + (2m− 1) · · · (2m− 2l + 3)

(2z)l−1

]
.

(17)
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Higher Fm(z) functions may also be obtained by differentiation of thew(z) function as
described below.

Define

t = i
√

z, (18)

W0(t) = − 1

i t

[
1− w(t)et2]

, (19)

and

b(t) = 1− w(t)et2
. (20)

Then by differentiation ofF0(z) as

F0(z) =
√
π

2
W0(t) (21)

we obtain for the lowest threeFm(z) functions

F1(z) = −
√
π

2

dW0(t)

dt

dt

dz
(22)

F2(z) =
√
π

2

d2W0(t)

dt2

(
dt

dz

)2

+
√
π

z

dW0(t)

dt

d2t

dz2
(23)

F3(z) = −
√
π

2

d3W0(t)

dt3

(
dt

dz

)3

−
√
π

2
3

d2W0(t)

dt2
dt

dz

d2t

dz2
−
√
π

2

dW0(t)

dt

d3t

dz3
, (24)

where for the derivatives ofW0 it holds

dnW0(t)

dtn
= −n

t

dn−1W0(t)

dtn−1
+ i

t

dnb(t)

dtn
(25)

and

dnb(t)

dtn
=
[
(n− 1)i

[(n−1)/2]∑
i=0

(2t)n−1−2i

i !(n− 1− 2i )!

]
db(t)

dt
. (26)

The term in brackets is equal to the expression for the Hermite polynomialHn−1(t) in which
the factor for sign was dropped. Fordb(t)/dt it holds

db(t)

dt
= − 2i√

π
et2

(27)

and the derivatives oft may be expressed as

dt/dz= i /(2
√

z) (28)

and forn≥ 2,

dnt

dzn
= (−1)n+1 i (2n− 3)!!

2n
z−n+1/2. (29)
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After an extensive numerical experimentation we recommend the following procedure for
obtainingFm(z) functions withm> 0. Forz falling into the region 1 of Fig. 1 we recom-
mend using routine FMTGEN from Gaussian 94 [13] or some other routine for realFm(x)
functions and rewriting it with double complex arithmetics. For region 4 of Fig. 1, we
recommend the use of Eq. (16). The upward formula, in a form somewhat different from
Eq. (16),

Fm(z) = [(2m− 1)Fm−1(z)− e−z]/2z, (30)

may also be used for regions 2 and 3. The referee of this paper made a careful analysis
of the numerical stability of Eq. (30) and showed that outside the small|z| region 1, the
upward recurrence form≤ 10 loses no more than one significant decimal place.

V. UPPER BOUNDS OFFm(z) FUNCTIONS

For real positive arguments it holds

F0(x) ≤ 1, (31)

which is used in programs for electronic structureab initio calculations for skipping cal-
culations of small two-electron integrals in a Gaussian basis set. The upper bound for such
an integral may be taken as a product of an “pre-exponential factor” andF0(x). The pre-
exponential factor is easy to calculate and if it is smaller than ana priori chosen threshold,
then calculation of that integral may be skipped. Considerable time may also be saved in
electron scattering calculations in this way. Upper bounds of hybrid two-electron integrals
in a mixed Gaussian and plane-wave basis set may also be expressed as a product of a simple
pre-exponential factor and the upper bound ofF0(z). For the complex arguments we have

|F0(z)| ≤ 1 for Rez≥ 0 (32)

and the asymptotic expression

|F0(z)| ≤
∣∣∣∣ e−z

−2z

∣∣∣∣ for Rez< 0 (33)

following from Eq. (14) forz with a large negative real part. For the purpose of pretesting
integrals the condition (33) may be used for anyz with Rez< 0.

VI. SUMMARY

Properties of the complex incomplete gamma functionsFm(z) were discussed from the
viewpoint of effective calculation of hybrid two-electron integrals in a mixed Gaussian and
plane-wave basis set. Different ways of calculations are recommended for different regions
of the complex argumentz. Asymptotes and upper bounds forFm(z) were determined.
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